
AT86RF211
..

User Guide

AT86RF211
AT86RF211-2 Frequency Generation Software User Guide

5310A–WIRE–12/02

AT86RF211

AT86RF211-4 Frequency Generation Software User Guide

5310A–WIRE–12/02

Section 1
Overview and Purposes of this

Software

1.1 Introduction The frequency registers of the AT86RF211 are 32 bits wide. The two registers F0 (to set
data '0' at FCHANNEL ± IF1) and F1 (to set data 1 at FCHANNEL ± deviation) have to
be programmed in transmit mode whilst only F2 (to set the local oscillator frequency)
has to be programmed in receive mode. The registers set the various dividers, prescal-
ers and VCO settings used in the synthesizer. The synthesizer of the AT86RF211 is a
multi-loop type with a very high level of both accuracy (200 Hz) and settling time
(200 µs typ. to swap from one channel to another). The need to achieve this high per-
formance level necessitated a special and innovative design of the chip leading to a
more complex calculation of the register values. All the bits in these registers are
scrambled and as there is no easy way to re-calculate each bit in relation with the
desired frequency, the calculation can not be embedded into the microcontroller.

Instead, Atmel can provide a demo software, which includes the algorithm to generate
the right register corresponding to the desired frequency. This software is delivered with
the Evalution Kit and the Development Kit (a.k.a. Thomlink). The registers are gener-
ated one by one. This is very convenient for test purposes and allows an easy
evaluation of the RF chip.

The frequency generation software described in this documentation is to enable the cal-
culation of all the registers needed by one application: all the channel transmission
frequencies and the receiver LO frequency depending on the reference crystal fre-
quency, the channel spacing the number of channels.

The bytes making up the different registers are delivered into a file the format of which
can be decided by the user allowing easy down loading and/or compiling of the created
library.

This software provides the means to:

allow the automatic generation of frequency registers taking into accounts the
reference crystal frequency,

generate library of registers, which can be compiled with the customer's application
software (directly into the Flash),

obviate the need for trimming on the board. (The trimmer is no longer required as the
reference crystal frequency is taken into account in the algorithm),

design easily a Frequency Hopping system by generating all the required channels.
AT86RF211 User Guide 1-1

Rev. 5310A–WIRE–12/02

Overview and Purposes of this Software
It then becomes a software tool to save time and cost when considering production
features and tests.

1.2 Installation and
Interface the
Software

1.2.1 Installing the
Software

Several files are delivered:

All these files must be installed in the same directory. As a first step, trx_exe.exe can be
launched and used to create output files.

1.2.2 Interface for the
Evaluation of the
Software

Two versions of the H/M interface are delivered to evaluate the registers' generation.
They are similar: one in C++ (trx_exe.exe) and one is in VB6 (trx_gen.exe).

TRX_EXE.EXE:
The interface gives access to the channel mode of the .dll. The input parameters are:

trx_dll.dll: the library itself including the functions to be called.

trx_gen.exe: a VB6 interface for testing purposes.

trx_exe.exe: a C++ interface for testing purposes.

trx_dll.lib: library file to be used by C/C++ applications.

trx_dll.exp: needed by the .exe.

trx_dll.h: include file for C/C++ applications.

Api_Trx_Dll.bas: include file for VB application.

Reference frequency (Hz) The measured frequency of the crystal or the trimmed value of the crystal.

Start channel (Hz) Center frequency of the first channel.

Deviation (Hz) Frequency deviation used for FSK modulation (for instance: 10000 if ± 10 kHz has to
synthesized).

Intermediate frequency (± Hz) If the application needs a LO higher than the RF channel, then this value must be
positive (for instance: 10700000). If the LO is lower than the RF channel, then this
value must be negative (for instance: -10700000).

Step/Channel spacing (Hz) The spacing between the two successive channels to be synthesized (for instance
100000).

Number of channels For each channel, 2 Tx frequencies and 1 Rx frequency are calculated (to be
synthesized).

Name of the output file A file will be generated containing all the calculated bytes. If the extension is .c or .h or
.cpp, a file ready to be compiled is generated. With other extensions, a text file is
generated.

Memory type This character field is used for the library type output file for compiling options (For
instance__flash).
1-2 AT86RF211 User Guide

5310A–WIRE–12/02

Overview and Purposes of this Software
Different resolution modes can be chosen:

Receiver band choice:

This parameter has to be selected carefully in accordance with the application
bandwidth.

High resolution All the 32 bits (4 bytes) of a frequency register are written in the file (resolution is
maximum). This is the recommended mode.

25 bits mode Only 25 bits (4 bytes + 1 bit) are given. A mask to rebuild to the 32 bits is given
(resolution is maximum).

P constant Some parameters are internally set to a constant value and the frequency register
length is decreased to 24 bits (3 bytes). The resolution is then decreased and 200 Hz
accuracy can not be achieved any more (resolution is minimum).

Tx/Rx separate Tx and Rx bytes are listed separetely in the output file

Little endian/big endian Output bytes format. Big endian mode is recommended.

No Band The calculation of the LO register is made without optimization in relation with
the receiver bandwidth. Normally not to be used.

Narrow Band The calculation of the LO register is made with optimization in relation with the
receiver bandwidth. To be used if a 455 kHz ceramic filter or a narrow band 10.7 MHz
ceramic filter is used => Band Width of the receiver less than 60 kHz. The accuracy of
the synthesizer is typ. 200 Hz.

Medium Band The calculation of the LO register is made with optimization in relation with the
receiver bandwidth. To be used if a 455 kHz ceramic filter or a narrow band 10.7 MHz
ceramic filter is used => Band Width less than 300 kHz. The accuracy of the synthe-
sizer is typ. 400 Hz.

Wide Band The calculation of the LO register is made with optimization in relation with the
receiver bandwidth. To be used if a 455 kHz ceramic filter or a narrow band 10.7 MHz
ceramic filter is used => Band Width less than 600 kHz. The accuracy of the synthe-
sizer is typ. 1 kHz with maximum of about 3 kHz.
AT86RF211 User Guide 1-3

5310A–WIRE–12/02

Overview and Purposes of this Software
Figure 1-1. TRX_EXE.EXE Display Interface

TRX_GEN.EXE:

The interface gives access to the channel mode and to the frequency mode of the .dll.
The input parameters for the channel mode are then the same for the TRX_EXE.EXE
version. For the frequency mode, the input parameters are the same except:

The intermediate frequency does not have to be programmed anymore as the user
directly indicates the frequencies he wants to generate.

The step is the spacing between the desired frequencies.

In this mode, the Tx frequencies and the Rx frequencies must be calculated separately.
1-4 AT86RF211 User Guide

5310A–WIRE–12/02

Overview and Purposes of this Software
Figure 1-2. TRX_GEN.EXE Display Interface

1.3 Structure of the
Library

The library is: trx_dll.dll. It can be used by any kind of VB or C/C++ application software.
It is also possible to interface it with high level measurement or production bench
software.

It must be included and compiled with the relevant library:

trx_dll.h for applications written with C/C++.

Api_Trx_Dll.bas for application written with Visual Basic.

The trx_dll.dll contains the following functions:

The H/M interface described above is calling these procedures. Thus what is generated
by this demo software is exactly what is generated using the .dll directly on customer's
application.

DWORD WINAPI TRXFreqMode(): Frequency range sweep and genera-
tion of the relevant registers.

DWORD WINAPI TRXChannelMode(): Channel range sweep and generation
of the relevant register.

void WINAPI TRXSyntheHz(): Direct call of the function, which
calculates a register.
AT86RF211 User Guide 1-5

5310A–WIRE–12/02

Overview and Purposes of this Software
1.3.1 TRXFreqMode Function generating the relevant registers covering the specified frequency range.

Prototype of this function:

DWORD WINAPI TRXFreqMode (DOUBLE dRefFreq
, DOUBLE dStartFreq
, DOUBLE dStepFreq
, DWORD nNbFreq
, DWORD nModeGen
, DWORD nP
, DWORD nBandType
, char *szFileName
, char *szMemType
, char *szSequenceName
, DWORD bAppend
);

Description of the parameters:

dRefFreq

Reference frequency (crystal) of the RF board (Hz)

dStartFreq

Start frequency of the range to be synthesized (Hz)

dStepFreq

Frequency step (Hz)

nNbFreq

Number of frequencies to be synthesized

nModeGen

Generation mode of the files. This parameter allows to specify the way the calcu-
lated registers will be written into the output file:
0 High resolution mode: registers are written completely in the output file (4
bytes per register thus 32 bits)
1 25 bits mode: 7 bits into the registers are constant, thereafter it is possible to
compact them to 25 bits; a set of n registers (n*4 bytes in the high resolution mode)
is then compacted into (n*3 + (n+7)/8) bytes.
2 P constant mode: the calculation of the registers is made with a constant
value for P, thereby 24 bits (3 bytes per register).
The registers are written as Little Endian (LS Bytes first) but it is possible to have
them written as Big Endian (MS Bytes first) by selecting the MSB of this parameter
nModeGen (i.e. 32nd bit) to 1.

nP

P value in the case where Constant P mode is used (between 0 and 6).

nBandType

Choice of the LO frequency accuracy for sensitivity optimization:
0 No Optimization: not to be used
1-6 AT86RF211 User Guide

5310A–WIRE–12/02

Overview and Purposes of this Software
1 Narrow Band: optimizes sensitivity for applications having a bandwidth in
reception of less than 60 kHz.
2 Medium Band: optimizes sensitivity for applications having a bandwidth in
reception of less than 300 kHz.
3 Wide Band: optimizes sensitivity for applications having a wider bandwidth.

szFileName

Character (Ansi C format) describing the name of the file in which are written the
registers. If the format is set with .h, .c ou .cpp then the .dll generates a C format file
otherwise CSV format is generated.

szMemType

Character (Ansi C format) describing a specific word to be added before the decla-
ration of the C structure filled with the data. This parameter is used only if the DLL
generates a C format output file. Example: " const "

szSequenceName

Character (Ansi C format) describing the name of the sequence; if the output is a C
format, the generated C structure will have this name.

bAppend

Boolean describing if data have to be added at the end of the file (value <> 0) or if
the new calculation erase the previous and renew the entire file (value = 0): this
allows the generation of several frequency ranges.

Return of the function:

1.3.2 TRXChannelMode Function generating the relevant registers covering the specified channels range.

Prototype of this function:

DWORD WINAPI TRXChannelMode (DOUBLE dRefFreq
, DOUBLE dStartChannel
, DOUBLE dDevTx
, DOUBLE dInterFreq
, DOUBLE dChannelStep
, DWORD nNbChannel
, DWORD nModeGen
, DWORD nP
, DWORD nBandType
, char *szFileName
, char *szMemType
, DWORD bSeparateTxRx
);

0 Function was correctly running.

1 Memory allocation error occurred.

2 Output file access failed.

3 Invalid parameter value: Wrong mode, number of channels is null, P value is
out of range.

4 In the 25 bits mode, the range of channels to be synthesized does not allow
all the 7 bits to remain constant.
AT86RF211 User Guide 1-7

5310A–WIRE–12/02

Overview and Purposes of this Software
Description of the parameters:

dRefFreq

Reference frequency (crystal) of the RF board (Hz).

dStartChannelStart frequency channel to be synthesized (Hz).

dDevTx

Deviation for the transmission (Hz). The dll synthesizes two frequencies for the
transmission: F0 = FChannel-dDevTx, F1 = FChannel+ dDevTx.

dInterFreq

Intermediate frequency for the reception (Hz). The .dll synthesizes one frequency
for the reception: F = FChannel + dInterFreq (LO frequency).

dChannelStep

Frequency step between two adjacent channels (Hz).

nNbChannel

Number of channels for which the .dll is going to synthesize the two frequencies for
transmission and the frequency for the reception.

nModeGen

Generation mode of the files. This parameter allows to specify the way the calcu-
lated registers will be written into the output file:
0 High resolution mode: registers are written completely in the output file (4
bytes per register thus 32 bits).
1 25 bits mode: 7 bits into the registers are constant, thereafter it is possible to
compact them to 25 bits ; a set of n registers (n*4 bytes in the high resolution mode)
is then compacted into (n*3 + (n+7)/8) bytes.
2 P constant mode: the calculation of the registers is made with a constant
value for P, thereby 24 bits (3 bytes per register).
The registers are written as Little Endian (LS Bytes first) but it is possible to have
them written as Big Endian (MS Bytes first) by selecting the MSB of this parameter
nModeGen (i.e. 32nd bit) to 1.

nP

value in the case where constant P mode is used (between 0 and 6).

nBandType

Choice of the LO frequency accuracy for sensitivity optimization:
0 No Optimization: not to be used.
1 Narrow Band: optimizes sensitivity for applications having a bandwidth in
reception of less than 60 kHz.
2 Medium Band: optimizes sensitivity for applications having a bandwidth in
reception of less than 300 kHz.
3 Wide Band: optimizes sensitivity for applications having a wider bandwidth.

szFileName

Character (Ansi C format) describing the name of the file in which are written the
registers. If the format is set with " .h ", " .c " or " .cpp " then the .dll generates a C
format file otherwise CSV format is generated.
1-8 AT86RF211 User Guide

5310A–WIRE–12/02

Overview and Purposes of this Software
szMemType

Character (Ansi C format) describing a specific word to be added before the decla-
ration of the C structure filled in with the data. This parameter is used only if the .dll
generates a C format output file . Example: " const ".

bSeparateTxRx

Boolean describing if the Tx and Rx frequencies have to be separated (value <> 0)
or if they are set by channels (value = 0). In the first case (frequencies are sepa-
rated), the .dll first writes a structure for the Tx frequencies (FTx0, FTx1 channel 1 ;
FTx0, FTx1 channel2 ; … ; FTx0, FTx1 channel n ; …) then a second structure for
the Rx frequencies (FRx channel 0 ; FRx channel 1 ; … FRx channel n ; …). In the
second case, the .dll writes one structure in which the frequencies are set by chan-
nel (FTx0, FTx1, FRx channel 0 ; FTx0, FTx1, FRx channel 1 ; … FTx0, FTx1, FRx
channel n ; …).

Note: In the 25 bits mode, Tx and Rx registers must be separated in the output file (bSepa-
rateTXRX = TRUE) ;

Return of the function:

1.3.3 TRXSyntheHz Low level function calculating the registers directly.

Prototype of the function:

void WINAPI TRXSyntheHz (DWORD FSKmode
, DOUBLE dRefFreq
, DOUBLE dChannelFreq
, DOUBLE dInterFreq
, DOUBLE dDevTx
, DWORD nP
, DWORD nBandType
, DWORD *pnReg1
, DWORD *pnReg2
);

0 Function was correctly running.

1 Memory allocation error occurred.

2 Output file access failed.

3 Invalid parameter value: Wrong mode, number of channels is null, P value is
out of range, Tx/Rx registers are not separated in 25 bits mode.

4 In the 25 bits mode, the range of channels to be synthesized does not allow
all the 7 bits to remain constant.
AT86RF211 User Guide 1-9

5310A–WIRE–12/02

Overview and Purposes of this Software
Description of the parameters:

FSKmode

0 Calculation for the reception mode (in this case, dDevTx must be null).

1 Calculation for the transmission mode (in this case, dInterFreq must be null).

dRefFreq

Reference frequency (crystal) of the TRX board (Hz).

dStartChannel

Channel frequency (Hz).

dInterFreq

Intermediate frequency for the reception (Hz). The .dll synthesizes one frequency
for the reception: F = FChannel + dInterFreq (LO frequency).

dDevTx

Deviation for the transmission (Hz). The .dll synthesizes two frequencies for the
transmission: F0 = FChannel -dDevTx, F1 = F Channel + dDevTx.

nP

P value. If -1, the .dll makes the calculation with the best value, otherwise the calcu-
lation is made with the given parameter (between 0 and 6).

pnReg1

Pointer on a 32 bits word in which the .dll is writing the value of the F0 register in
transmission mode or F2 in the reception mode.

pnReg2

Pointer on a 32 bits word in which the .dll is writing the value of the F1 register in
transmission mode; unused for the reception mode.

nBandType

Choice of the LO frequency accuracy for sensitivity optimization:
0 No Optimization: not to be used.
1 Narrow Band: optimizes sensitivity for applications having a bandwidth in
reception of less than 60 kHz.
2 Medium Band: optimizes sensitivity for applications having a bandwidth in
reception of less than 300 kHz.
3 Wide Band: optimizes sensitivity for applications having a wider bandwidth.

Return of the function:
Note: if a parameter is wrong (ex: wrong value for P), the .dll does make no calculation (null is

written in all the word pointed).
1-10 AT86RF211 User Guide

5310A–WIRE–12/02

Outputs and Files’Organization
Section 2
Outputs and Files’Organization

2.1 Introduction Three kinds of files are generated:

.c,.h,.cpp: They can be considered as library. Directly compilation on a production
bench is possible to allow the down loading in the Flash of the micro-controller of the
RF application board.

.log: They contain frequencies' information for verification purposes.

text files: they can be read automatically or manually by any tools and registered as
frequency registers.

All these files are made of 2 fields:

Comments field: It recalls all the information the user has specified for the calculation.

Useable field: It contains the relevant register information that is of interest for the
application.

2.2 Library Type File
(.c, .h, .cpp)

Useable field:

A structure (TRXReg) is created and contains the registers, which are calculated. If Tx
and Rx are specified to be separated, then 2 structures are created (TRXTxReg and
TRXRxReg).
AT86RF211 User Guide 2-1

5310A–WIRE–12/02

Outputs and Files’Organization
Figure 2-1.

2.3 Log Type File
(.log)

Whatever the file option, this file is created. It gives the generated frequencies and the
difference between the desired frequency and the synthesized frequency.

Figure 2-2.

(Tx – Dev) register (Tx + Dev) register Rx (LO) register

1 channel to be generated
character field

desired frequencies synthesized frequencies
2-2 AT86RF211 User Guide

5310A–WIRE–12/02

Outputs and Files’Organization
2.4 Text type file It contains comments (COM;), structure of the registers (SEQ;) and the bytes of the reg-
isters (VAL;).

Figure 2-3.

This file is of interest for applications, which need to read the generated registers easily.
It is automatically selected if .c, .h, .cpp are not specified as input parameters.

AT86RF211 User Guide 2-3

5310A–WIRE–12/02

Outputs and Files’Organization
2-4 AT86RF211 User Guide

5310A–WIRE–12/02

High Resolution/Low Resolution Modes
Section 3
High Resolution/Low Resolution

Modes

The high resolution mode for the frequency registers must be understood as the 32 bits
mode. It allows an accuracy of about 200 Hz concerning the frequency, which is synthe-
sized. This mode is recommended as it offers both high accuracy and easy
handling of the registers (no scrambling/descrambling).

The 25 bits mode delivers the registers coded with 25 bits instead of 32 bits. 5 bits are
constant whatever the generated frequency and 2 bits only depend on the chosen fre-
quency band. It allows storing less bytes in the memory of the microcontroller but it is
necessary to unscramble the stored bytes. The high resolution of the synthesizer is kept
and the frequencies are alike the ones generated with the high resolution mode (need
for an unscramble operation in the microcontroller).

The P=cst mode offers the ability to have only 24 bits for the frequency registers. To do
so, 3 bits remain constant and the resolution of the synthesizer reduces . It can be
expected to have an accuracy of 10 kHz instead of 200 Hz. This mode is not recom-
mended. Only if very stringent memory allocation/size and very low resolution needs are
required, can it be used. P must remain between 0 and 6.

Only the 25 bits mode and the P=cst mode will be detailed. The high resolution mode
does not have specific features and has already been described.

3.1 25 bits mode In the 32 bits frequency register, the bits 0, 8, 14, 17 and 25 are constant whatever the
generated frequency.

0, 8, 17, 25 = '0'.

14 = '1'.

The bits 11 and 18 depend on the frequency band, which is chosen.

Notes: in this mode, Tx/Rx must be chosen separated as the Tx and Rx frequencies can
be into 2 different columns.

Generated
frequency

400-450 MHz 450-480 MHz 800-850 MHz 900-950 MHz

Bit 11 1 1 0 0

Bit 18 1 0 1 0
AT86RF211 User Guide 3-1

5310A–WIRE–12/02

High Resolution/Low Resolution Modes
3.1.1 Output Structure szMemType struct {

unsigned short nNbRegs;

unsigned short iChangeMask;

unsigned char cMode;

unsigned char bBigEndian;

unsigned char filler[2];

unsigned char ArMask0[4];

unsigned char ArMask1[4];

unsigned char ArRegs[Dim];

} SeqName = …

Description of the parameters:

3.1.2 Description of the
Compacting

Considering one frequency band, only 25 bits have to be stored. The software is com-
pacting the 32 bit register into a 25 bit register: the 7 constant bits are removed and
replace by the 7 last ones (MSB), and the bit n°24 (the 25th) of all the registers are
stored into dedicated bytes.

Bits are changed as expressed below:

Bit n° 0 <= bit n° 26

Bit n° 8 <= bit n° 27

Bit n° 11 <= bit n° 28

Bit n° 14 <= bit n° 29

Bit n° 17 <= bit n° 30

Bit n° 18 <= bit n° 31

SzMemType As specified when calling the function

nNbRegs number of generated registers

iChangeMask Index of the register from which mask2 has to be used (0 if no change in the sequence)

cMode Sequence mode => 1 for a 25 bits mode sequence

bBigEndian Boolean indicating the order of the bytes (big endian 1 as recommended)

filler Filling field to allow alignment in the presentation of the file

ArMask0 32 bits (4 bytes) mask to apply to the registers after uncompacting - this mask only applies to registers
with index strictly below the index iChangeMask

ArMask1 32 bits (4 bytes) mask to apply to the registers after uncompacting - this mask only applies to registers
with index equal or above the index iChangeMask

ArRegs Table containing the registers - they are set 8 by 8 and written: 1 bytes with all the 25th bits + 8x3 bytes
containing the registers.

Dim Dimension of the table of bytes => NbReg * 3 + ((NbReg+7)/8)
3-2 AT86RF211 User Guide

5310A–WIRE–12/02

High Resolution/Low Resolution Modes
Then, the register size is only 25 bits. To allow only 24 bits (3 bytes), the 25th is stored
into the dedicated byte. Thereafter, only 3 bytes are necessary to store one frequency
register.
Notes: 1. the dedicated byte must be renewed every 8 registers thus for a set of 8x3 = 24 bytes

(8 frequencies),
2. the dedicated byte is filled from the LSB up to the MSB.

The example below shows the generated file for 5 channels in the 915 MHz band. There
are 10 registers (2x5 frequencies) for the Tx and 5 registers (1x5 registers)for the Rx.

Figure 3-1.

The compacted registers of 24 bits are given thanks to 3 bytes:

0x5c, 0x3, 0x6a are the 3 compacted bytes of the 1st Tx register.

The 25th bit of this 1st Tx register is '0' (LSB of 0x38).

0xb5, 0xa, 0x7d are the 3 compacted bytes of the 1st Rx register.

The 25th bit of this 1st Rx register is '1' (LSB of 0x1b).

To uncompact the registers, the reverse operation has to be done. The 3 bytes are writ-
ten as LSB into a 32 bits register. The bits n°0, 8, 11, 14, 17 and 18 are copied as
expressed below:

Tx registers

Rx registers

8 sets of 3 compacted bytes

5 sets of 3 compacted bytes

2 sets of 3 compacted bytes

Dedicated byte containing all the bits n°25 of all the 8 following
i t

Dedicated byte containing all the bits n°25 of all the 5 following
i t

Dedicated byte containing all the bits n°25 of all the 2 following registers

2 masks containing the constant bits

2 masks containing the constant bits
AT86RF211 User Guide 3-3

5310A–WIRE–12/02

High Resolution/Low Resolution Modes
Bit n° 26 <= bit n° 0

Bit n° 27 <= bit n° 8

Bit n° 28 <= bit n° 11

Bit n° 29 <= bit n° 14

Bit n° 30 <= bit n° 17

Bit n° 31 <= bit n° 18

then bits n°0, 8, 11, 14, 17, 18 and 25 are set to '0'. Therefore, the 32 bits register only
needs to retrieve the constant bits: this is done applying the mask given in the generated
file. A OR operation is done between the mask and the register.

The example given above is then uncompacted as:

0x5c, 0x3, 0x6a with LSB of 0x38 for the 25th bits => 0x88, 0x58, 0x2, 0x6a.

(0x88, 0x58, 0x2, 0x6a) OR (0x0, 0x0, 0x40, 0x0) => 0x88, 0x58, 0x42, 0x6a is the
register to be programmed.

Notes: 1. the generated file gives a mask to retrieve the values of the bits.
2. in the example, the mask is {0x00, 0x00, 0x40, 0x00} because only the bit 14 has to

be set to '1'.
3. it is possible to have 2 masks for the same file. The normal operation only uses one,

but 2 masks could be necessary if the frequencies to be generated are in 2 different
ranges (for instance, Rx frequencies between 896.3 and 904.3 MHz for channels
between 907 and 915 MHz). If 2 masks are used, the iChangeMask indicates where
the change occurs.

4. if the text file output is chosen, in addition to COM;, SEQ;, VAL; fields, there is a
MSK; field which delivers the mask value. The first VAL; field gives the dedicated
byte for all the 25th bits.

3.2 P = cst mode In the P=cst mode, the P divider ratio of the PLL is kept constant. With the addition of
the constant bits of the 25 bits mode, it is possible to code the register with only 3 bytes
and no dedicated byte (as for the 25th bit of the 25 bits mode).

bits n°0, n°8, n°17, n°25 = '0'.

bit n°14 = '1'.

bits n°3, n°12, n°21 depending on the value of P. P=3 is recommended then bit 3 =
'1', bit 12= '1', bit 21 = '0' (these values are taken into account in the mask).

Note: In this mode, bit n°11 and bit n°18 can vary, then no need for a dedicated byte in the file
structure. The 3 bytes are directly available.

3.2.1 Output Structure szMemType struct {

unsigned short nNbRegs;

unsigned char cMode;

unsigned char bBigEndian;

unsigned char ArMask[4];

unsigned char ArRegs[Dim];

} SeqName = …
3-4 AT86RF211 User Guide

5310A–WIRE–12/02

High Resolution/Low Resolution Modes
Description of the parameters:

3.2.2 Description of the
Compacting

Considering one frequency band, only 24 bits have to be stored. The software is com-
pacting a 32 bit register into a 24 bit register: the 8 constant bits are removed and
replace by the 7 last ones.

Bits are changed as expressed below:

Bit n° 0 <= bit n° 24

Bit n° 3 <= bit n° 26

Bit n° 8 <= bit n° 27

Bit n° 12 <= bit n° 28

Bit n° 14 <= bit n° 29

Bit n° 17 <= bit n° 30

Bit n° 21 <= bit n° 31

Then, the registers' size is only 24 bits (from n°0 to n°23). Thereafter, only 3 bytes are
necessary to store one frequency register.

The example below shows the generated file for 5 channels in the 915 MHz band. There
are 10 registers (2x5 frequencies) of 3 bytes for the Tx and 5 registers (1x5 registers) of
3 bytes for the Rx.

SzMemType As specified when calling the function

nNbRegs Number of generated registers

cMode Sequence mode => 2 for a P=cst mode sequence

bBigEndian Boolean indicating the order of the bytes (big endian 1 as recommended)

ArMask 32 bits (4 bytes) mask to apply to the registers after uncompacting

ArRegs Table containing the registers - they are set 8 by 8 and written: 1 byte with
all the 25th bits + 8x3 bytes containing the registers.

Dim Dimension of the table of bytes => NbReg * 3
AT86RF211 User Guide 3-5

5310A–WIRE–12/02

High Resolution/Low Resolution Modes
Figure 3-2.

The compacted registers of 24 bits are given thanks to 3 bytes:

0xd1, 0x44, 0xcf are the 3 compacted bytes of the 1st Tx register.

0x0b, 0x25, 0xdc are the 3 compacted bytes of the 1st Rx register.

To uncompact the registers, the reverse operation has to be done. The 3 bytes are writ-
ten as LSB into a 32 bits register. The bits n° 0, 3, 8, 12, 14, 17 and 21 are copied as
expressed below:

Bit n° 24 <= bit n° 0

Bit n° 26 <= bit n° 3

Bit n° 27 <= bit n° 8

Bit n° 28 <= bit n° 12

Bit n° 29 <= bit n° 14

Bit n° 30 <= bit n° 17

Bit n° 31 <= bit n° 21

Tx registers

Rx registers

10 sets of 3 compacted bytes

5 sets of 3 compacted bytes

1 mask containing the constant bits (P= 2 in this example)

1 mask containing the constant bits
3-6 AT86RF211 User Guide

5310A–WIRE–12/02

High Resolution/Low Resolution Modes
then bits n° 0, 3, 8, 12, 14, 17, 21 and 25 are set to '0'. Therefore, the 32 bits register
only needs to retrieve the constant bits: this is done applying the mask given in the gen-
erated file. An OR operation is done between the mask and the register bit to bit.

The example given above is then uncompacted as:

0xd1, 0x44, 0xcf => 0x25, 0xd1, 0x4, 0xc6

(0x25, 0xd1, 0x4, 0xc6) OR (0x0, 0x0, 0x50, 0x0) => (0x25, 0xd1, 0x54, 0xc6) is the
register to be programmed.

Notes: 1. The generated file gives a mask to retrieve the values of the bits.
2. In the example, the mask is {0x00, 0x00, 0x50, 0x00} because the bits n°14 and n°12

have to be set to '1'.
3. If the text file output is chosen, in addition to COM;, SEQ;, VAL; fields, there is a

MSK; field which delivers the mask value. The first VAL; field gives the dedicated
byte for all the 25th bits.
AT86RF211 User Guide 3-7

5310A–WIRE–12/02

High Resolution/Low Resolution Modes
3-8 AT86RF211 User Guide

5310A–WIRE–12/02

 Printed on recycled paper.

5310A–WIRE–12/02 /0M

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

ATMEL® is the registered trademark of Atmel.

Other terms and product names may be the trademarks of others.

	Section 1
	Overview and Purposes of this Software
	1.1 Introduction
	1.2 Installation and Interface the Software
	1.2.1 Installing the Software
	1.2.2 Interface for the Evaluation of the Software
	1.3 Structure of the Library
	1.3.1 TRXFreqMode
	1.3.2 TRXChannelMode
	1.3.3 TRXSyntheHz
	Section 2
	Outputs and Files’Organization
	2.1 Introduction
	2.2 Library Type File (.c, .h, .cpp)
	2.3 Log Type File (.log)
	2.4 Text type file
	Section 3
	High Resolution/Low Resolution Modes
	3.1 25 bits mode
	3.1.1 Output Structure
	3.1.2 Description of the Compacting
	3.2 P = cst mode
	3.2.1 Output Structure
	3.2.2 Description of the Compacting

